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Abstract: This Multi-Level Inverter (MLI) systems are increasingly employed in modern power electronics due to their 

ability to generate high-quality voltage waveforms with reduced harmonic distortion. However, as MLI systems grow in 

complexity, they become more susceptible to faults, which can lead to system instability and degraded performance. This 

paper presents a robust fault tolerance strategy for MLI systems using Fuzzy Logic-Based Predictive Control (FLPC). The 

proposed method combines the predictive capabilities of model-based control with the flexibility and adaptability of fuzzy 

logic, offering enhanced resilience against faults and system uncertainties. The FLPC approach predicts the future states 

of the MLI system and adjusts control actions dynamically based on fuzzy logic rules, allowing for real-time fault detection 
and compensation. This ensures stable operation even in the presence of faults, while minimizing total harmonic distortion 

(THD) and improving overall system reliability. Simulation results demonstrate the effectiveness of the proposed FLPC 

strategy, showing significant improvements in fault tolerance, dynamic response, and output quality compared to 

conventional control methods. The proposed approach provides a viable solution for enhancing the robustness of MLI 

systems in critical applications such as renewable energy integration and industrial motor drives. 
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I. INTRODUCTION 

 Power converters play a crucial role in modern power systems and microgrids. Conventional multi-loop control structures 

with linear controllers, such as PI, PID, PD, and PR, are widely used to regulate the output of power converters interfaced 

with renewable energy sources (RESs). To prevent undesirable interactions between control loops, inner loops are designed 

with higher bandwidths than the outer loop, resulting in an overall slow dynamic response of the multi-loop control strategy. 

Additionally, conventional linear controllers heavily depend on system parameters, making them vulnerable to changes in 

system structure and uncertainties in RESs generation, potentially leading to performance degradation and system 

instability. To address these challenges, a state-space neural network-based predictive control method is proposed, aiming 

to enhance robustness against parameter mismatches and uncertainties in RESs generation. 

The three-phase inverter is a widely used device for converting energy from a DC voltage source to an AC load. Its control 

has been extensively studied in both scientific literature and industry-oriented research, especially for applications like 

uninterruptible power supplies (UPSs), energy-storage systems, variable frequency drives, and distributed generation. 

Inverters are commonly combined with output LC filters to produce high-quality sinusoidal output voltages with low total 

harmonic distortion (THD), suitable for various loads, including unbalanced or nonlinear ones. The performance of the 

inverter relies heavily on the applied control technique, which must handle load variations, system non-linearity, and ensure 

stability under any operating condition with a fast transient response. 
An inverter is a power electronic device that converts power from one form to another, such as changing DC to AC at the 

required frequency and voltage output. Inverters are classified based on the source of supply and the topology in the power 

circuit into two types: voltage source inverter (VSI) and current source inverter (CSI). VSI has a DC voltage source with 

low impedance at the input terminals, while CSI has a DC current source with high impedance. 

 
Figure 1: Three Phase Inverter 

I. LITEATURE REVIEW 

Mohamed et al. [1] propose a novel control scheme for a two-level converter that combines Model Predictive Control 

(MPC) with feed-forward Artificial Neural Network (ANN) to enhance steady-state and dynamic performance for different 
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loads. The effectiveness of the ANN-based strategy is validated through simulations using MATLAB/Simulink tools and 

tested on both linear and non-linear loads, showing impressive steady-state and dynamic performance. 

In their paper, Bakeer et al. [2] propose a model-free control strategy that employs artificial neural networks (ANNs) to 

address parameter mismatching in inverter performance. They utilize Model Predictive Control (MPC) as an expert and 

train the ANN using data collected from MPC simulations. The study focuses on a specific four-level three-cell flying 

capacitor inverter and employs MATLAB/Simulink for simulations. The results demonstrate that their approach 

outperforms conventional MPC in handling parameter mismatch and reducing total harmonic distortion. Additionally, the 

researchers validate their method through experiments using a C2000TM-microcontroller-LaunchPadXL 

TMS320F28379D kit. 

In their work, Wan et al. [3] develop machine learning (ML) controllers for Modular Multilevel Converters (MMC) by 

leveraging data from the Model Predictive Control (MPC) algorithm. The ML models are trained to mimic the behavior of 

MPC controllers, which helps in reducing the computational load. They explore two types of ML controllers: NN regression 

and NN pattern recognition. Among these, NN regression demonstrates superior control performance and requires less 

computational effort compared to the alternative approach. 

In their research, Sarali et al. [4] introduce a novel two-stage converter scheme that integrates Model Predictive Control 

(MPC) with a feed-forward neural network. This combination aims to reduce Total Harmonic Distortion (THD) and 

improve overall performance for different loads. The MPC algorithm generates valuable information used for online 
training of the feed-forward neural network. The proposed control strategy is then evaluated through simulations conducted 

in MATLAB/Simulink. 

In their study, Zao et al. [5] focus on stabilizing DC distribution buses with dual-active-bridge converters. They address 

the stabilization issue by proposing an active damping solution based on model predictive control (MPC). Their approach 

involves including stabilization terms in the cost function to enhance control performance. They also use an adaptive 

weighting factor that considers a stray resistor to ensure stable load voltage and effective DC-link voltage stabilization. 

The proposed method is validated through simulations and practical experiments, demonstrating its effectiveness in 

achieving stability and reliable performance for DC distribution systems. 

In their work, Abbas et al. [6] introduce a neural network-based Model Predictive Controller (MPC) designed for a dc-dc 

buck converter operating in Continuous Conduction Mode (CCM). The controller is trained using the 'trainlm' method, and 

its performance is compared to that of a classical lead controller. Simulation results confirm the effectiveness and validity 

of the proposed neural network-based MPC design for the buck converter in CCM. 

In their research, Chen et al. [7] employ a backpropagation neural network (BPNN) to fit offline control laws, leading to 

improved performance and reduced storage and computational load. The approach allows parallel calculation of control 

parameters, eliminating the need for serial evaluation. Experimental results demonstrate that a BPNN with only 49 

parameters can effectively fit over 10,000 offline control laws, enabling 1-MHz switching and control frequency with a 4-

MHz clock frequency. This indicates the efficiency and practicality of using BPNN for offline control law approximation. 
In their work, Pho et al. [8] present an innovative approach called ANN-MPC for controlling Cascaded H-Bridge (CHB) 

converters. They utilize a multistep MPC controller to generate training data for an artificial neural network (ANN). Once 

trained, the neural network can control the CHB system independently without the need for MPC. The performance of the 

proposed ANN-MPC controller is compared to conventional multistep MPC, and the approach is validated through 

experimentation on a practical system. 

In their research, Sabzevari et al. [9] introduce a state-space neural network (ssNN) as a model-free current predictive 

control method for a three-phase power converter. To achieve faster convergence, they utilize Particle Swarm Optimization 

(PSO). The proposed ssNN-PSO-predictive controller effectively handles parameter variations, leading to enhanced 

robustness compared to conventional finite-control-set MPC. Simulation results demonstrate the effectiveness and 

advantages of the ssNN-PSO-predictive controller in controlling the three-phase power converter. 

In their study, Kacimi et al. [10] introduce a novel hybrid Maximum Power Point Tracking (MPPT) strategy for 

photovoltaic systems. The method combines artificial neural networks with an improved model predictive control approach 

that utilizes a Kalman filter. This hybrid strategy allows for efficient tracking of the maximum power point even in rapidly 

changing weather conditions while minimizing overshoot. The proposed MPPT outperforms conventional Perturb and 

Observe (P&O), Neural Network with Proportional-Integral (NN-PI), and Neural Network Model Predictive Control (NN-

MPC) methods in terms of response time, efficiency, and steady-state oscillations, both under stable and variable 

environmental conditions. 
II. PROPOSED METHODOLOGY  

Model Predictive Control (MPC) is an advanced control approach that determines control actions by addressing an 

optimization issue at each control interval. This method evaluates the system's current condition and anticipates upcoming 

actions across a forecasted period. The suggested procedure includes the subsequent phases: 

A. Design of Model Predictive Control for Multi-Level Inverter 

System Identification: 

 Gather data and parameters of the multi-level inverter. 

 Analyze the dynamic behavior of the system under different scenarios. 

Formulation of the Optimization Problem: 

 State the objective of the MPC, e.g., to regulate the output voltage of the inverter. 

 Specify constraints of the system such as voltage, current limits, and switching frequency limits. 
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Modelling the Predictive Controller: 

 Use state-space models or differential equations representing the multi-level inverter dynamics. 

 Define a prediction horizon over which future control actions and system outputs are predicted. 

Controller Implementation: 

 At each control interval, solve the optimization problem to find the optimal control actions. 

 Apply the first control action and reiterate the process. 

B. THD Reduction using LC Filter 

Total Harmonic Distortion (THD) represents the distortion in a waveform due to harmonics. For a multi-level inverter, this 

is particularly significant as the quality of the output waveform (typically a voltage) determines the performance of devices 

connected to it. 

Harmonic Analysis: 

 Use FFT (Fast Fourier Transform) or other harmonic analysis techniques to analyze the harmonics in the output 

waveform of the inverter. 

LC Filter Design: 

 Choose suitable values for the inductor (L) and capacitor (C) based on the predominant harmonics and desired cut-off 

frequency. 

 The LC filter will act as a low-pass filter, allowing the fundamental frequency to pass while attenuating higher-

frequency harmonics. 

Integration and Testing: 

 Connect the LC filter to the output of the inverter. 

 Re-analyze the output waveform and calculate the new THD to confirm the improvement. 

C. Fault Tolerant MLI using Fuzzy Logic 

Fault tolerance ensures the system operates correctly even in the presence of faults. Fuzzy logic, with its capability to 

handle imprecise data and make decisions, is apt for this. 

Fault Detection: 

 Define possible faults that can occur in a multi-level inverter, e.g., short-circuit, over-voltage, etc. 

 Monitor key parameters that indicate these faults. 

Fuzzy Logic Controller Design: 

 Define fuzzy sets for input and output variables. 

 Formulate fuzzy rules based on expert knowledge or simulation results to determine the control actions during fault 

conditions. 

 Defuzzify the output of the fuzzy system to obtain a crisp value for the control action. 

Sample of fuzzy rules are presented below: 

IF SwitchStatus(S1) IS Failed AND SwitchStatus(S2) IS Failed THEN VoltageLevel IS NOT +3VDC 

IF SwitchStatus(S3) IS Failed AND SwitchStatus(S4) IS Failed THEN VoltageLevel IS NOT +3VDC 

IF SwitchStatus(S3) IS Working OR AlternateConfiguration IS Working THEN VoltageLevel IS 2VDC 

IF SwitchStatus(S5) IS Failed AND SwitchStatus(S6) IS Failed THEN VoltageLevel IS +3VDC 

... and so on. 

Fault Handling: 
There are several methods to manage an MLI through the PWM strategy. The most prevalent techniques include Sinusoidal 

Pulse Width Modulation (SPWM), space vector modulation (SVM), and Selective Harmonic Elimination (SHE-PWM). 

Furthermore, determining the switching angles in SHE can be challenging with an increasing number of levels. In this 

study, we employ the Nearest Level Control (NLC) or rounding approach. This method boasts of a low switching frequency 

and also minimizes switching losses. The essence of the NLC method is to generate a large number of voltage levels by 
equating the amplified voltage reference (K*Vref) to the nearest producible voltage level by the converter, as illustrated in 

the provided figure. The gain, denoted as K, can be expressed as: 𝐾 = (𝑛 − 1)/2. Here, n signifies total number of levels. 

III. SIMULATION SETUP 

Table 1 shows the parameters description with their values including resistance, Inductance, Capacitance, DC voltage, 

Frequency, Load type and levels.  

Table 1: Parameters Description 

Input Parameters Values 

Resistance 1 ohm 

Inductance 2e-3 H 

Capacitance 1e-3 F 

DC voltage 220 volt 

Frequency 50Hz 

Load Type Resistance 

Levels 7 
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IV. RESULT ANALYSIS 

Figure 2 presents the voltage prediction efficiency of the model after it's trained using ANN. The training model 

incorporates filter current, output voltage, output current, and reference voltage as input parameters. Its primary objective 

is to forecast the desired switching state, viewed as the voltage vector for inverters. The results of testing seven different 

switching states are showcased. In the subsequent figure, 2, the learning accuracy for both linear and non-linear data 

samples is displayed.   

 
Figure 2: Learning Efficiency of Predictive Model 

 
Figure 3: Learning Accuracy of Predictive Model with Linear and Non-Linear Load 

Figure 3 and 4 depict the output variable paired with the switching variable to produce a 7-level output, as well as the 

output voltage for a 7-level MLI. When contrasted with the current approach, the proposed technique yields a more accurate 

sinusoidal output within the time frame of 0-0.2 seconds. 

 
Figure 4: Switching Variable to generate 7 level output 

 
Figure 5: Output voltage generated for 7-level MLI 
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(a) Output Voltage and Current Graph 

 
(a) Current at Switch S1 

 
(b) Current at Switch S2 

Figure 6: Voltage and Current Graph at Fault Occurrence at Switch S1 and S2 
In Figure 6, there's a noticeable change in the output voltage levels. Specifically, when switches S1 and S2 experience 

faults, the voltage levels drop from seven to five. This demonstrates the impact of these switch faults on the overall voltage 

output. 

 
(a) Output Voltage and Current Graph 

 
(b) Current at Switch S3 

 
(c) Current at Switch S4 

Figure 7: Voltage and Current Graph at Fault Occurrence at Switch S3 and S4 
Figure 7 illustrates the output voltage and current waveforms resulting from faults in switches S3 and S4. These disruptions 

cause the Multilevel Inverter to function as a five-level inverter after the fault. Conversely, Figure 4.7 indicates that even 

when faults arise in bidirectional switches S5 and S6, the Multilevel Inverter's output remains consistent at seven levels.  
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(a) Output Voltage and Current Graph 

 
(b) Current at Switch S5 

 
(c) Current at Switch S6 

Figure 8: Voltage and Current Graph at Fault Occurrence at Switch S5 and S6 
 

V. CONCLUSION  

The research has effectively exhibited the merits of integrating Model Predictive Control (MPC) with a three-phase voltage-
source inverter, emphasizing its role in output voltage regulation. The inclusion of the LC filter has unequivocally proven 

beneficial in mitigating THD, enhancing the quality of the output voltage waveform. Through fault-tolerant multilevel 

inverter topologies, the study underscores the necessity for uninterrupted power supply systems, especially in renewable 

energy setups. The Fuzzy Logic-based system has also demonstrated significant potential in identifying and counteracting 

faults, ensuring a steadfast performance of the inverter. The simulation results affirm the robustness of the proposed 

methodology. When pitted against existing models, the proposed system exhibits superior voltage output, especially 

between 0-0.2 seconds, and maintains its efficiency even when faced with faults in its bidirectional switches. This study 

underscores the potential of leveraging modern control strategies and fault-tolerant topologies in building efficient and 

resilient power electronic systems. The exploration of Model Predictive Control (MPC) combined with neural networks 

for multilevel inverters, as presented in this study, opens a myriad of opportunities for further research. Future endeavors 

can focus on enhancing the real-time execution speed of the combined MPC-ANN model, expanding its applicability to 

other power electronic configurations, and incorporating additional fault diagnosis techniques. Moreover, the integration 

of more advanced machine learning algorithms might lead to even better prediction and control accuracy. The adaptability 

of the proposed approach to emerging power electronic applications, particularly in renewable energy domains such as 

solar and wind energy systems, can also be a promising avenue for future research. 

 

References 
[1]  I. S. Mohamed, S. Rovetta, T. D. Do, T. Dragicević, and A. A. Z. Diab, “A Neural-Network-Based Model 

Predictive Control of Three-Phase Inverter With an Output $LC$ Filter,” IEEE Access, vol. 7, pp. 124737–124749, 

2019, doi: 10.1109/ACCESS.2019.2938220. 

[2] A. Bakeer, I. S. Mohamed, P. B. Malidarreh, I. Hattabi, and L. Liu, “An Artificial Neural Network-Based Model 

Predictive Control for Three-Phase Flying Capacitor Multilevel Inverter,” IEEE Access, vol. 10, pp. 70305–70316, 

2022, doi: 10.1109/ACCESS.2022.3187996. 

[3] S. Wang, T. Dragicevic, Y. Gao, and R. Teodorescu, “Neural Network Based Model Predictive Controllers for 

Modular Multilevel Converters,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 1562–1571, 2021, doi: 

10.1109/TEC.2020.3021022. 

[4] D. S. Sarali, V. Agnes Idhaya Selvi, and K. Pandiyan, “An Improved Design for Neural-Network-Based Model 

Predictive Control of Three-Phase Inverters,” in 2019 IEEE International Conference on Clean Energy and Energy 

Efficient Electronics Circuit for Sustainable Development (INCCES), 2019, pp. 1–5. doi: 

10.1109/INCCES47820.2019.9167697. 

[5] D. Zhao et al., “Improved Active Damping Stabilization of DAB Converter Interfaced Aircraft DC Microgrids 

Using Neural Network-Based Model Predictive Control,” IEEE Trans. Transp. Electrif., vol. 8, no. 2, pp. 1541–

1552, 2022, doi: 10.1109/TTE.2021.3094757. 



Kumar and Mala et al. 

  

 

127 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 07, Issue 03, September-2024 

[6] G. Abbas, U. Farooq, and M. U. Asad, “Application of neural network based model predictive controller to power 

switching converters,” in The 2011 International Conference and Workshop on Current Trends in Information 

Technology (CTIT 11), 2011, pp. 132–136. doi: 10.1109/CTIT.2011.6107948. 

[7] J. Chen, Y. Chen, L. Tong, L. Peng, and Y. Kang, “A Backpropagation Neural Network-Based Explicit Model 

Predictive Control for DC–DC Converters With High Switching Frequency,” IEEE J. Emerg. Sel. Top. Power 

Electron., vol. 8, no. 3, pp. 2124–2142, 2020, doi: 10.1109/JESTPE.2020.2968475. 

[8] B. B. Pho, M. H. Tran, T. M. Tran, and P. Vu, “An Artificial Neural Network-Based Model Predictive Control Of 

Cascaded H-Bridge Multilevel Inverter,” Int. J. Renew. Energy Res., vol. 12, no. 3, pp. 1279–1288, 2022, doi: 

10.20508/ijrer.v12i3.13145.g8513. 

[9] S. Sabzevari, R. Heydari, M. Mohiti, M. Savaghebi, and J. Rodriguez, “Model-Free Neural Network-Based 

Predictive Control for Robust Operation of Power Converters,” Energies 2021, Vol. 14, Page 2325, vol. 14, no. 8, 

p. 2325, Apr. 2021, doi: 10.3390/EN14082325. 

[10] N. Kacimi, S. Grouni, A. Idir, and M. S. Boucherit, “New improved hybrid MPPT based  on neural network-

model predictive control-Kalman filter for photovoltaic system,”  Indones. J. Electr. Eng. Comput. Sci., vol. 20, 

no. 3, pp. 1230–1241, 2020, doi:  10.11591/ijeecs.v20.i3.pp1230-1241. 

[11] S. Saadatmand, P. Shamsi, and M. Ferdowsi, “Power and Frequency Regulation of Synchronverters Using a Model 

Free Neural Network-Based Predictive Controller,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3662–3671, 
2021, doi: 10.1109/TIE.2020.2984419. 

 [12] Y. C. Lin, D.-D. Chen, M.-S. Chen, X.-M. Chen, and J. Li, “A precise BP neural network-based online model 

predictive control strategy for die forging hydraulic press machine,” Neural Comput. Appl., vol. 29, no. 9, pp. 585–

596, 2018, doi: 10.1007/s00521-016-2556-5. 

[13] N. L. Jian, H. Zabiri, and M. Ramasamy, “Control of the Multi-Timescale Process Using Multiple Timescale 

Recurrent Neural Network-Based Model Predictive Control,” Ind. Eng. Chem. Res., 2022, doi: 

10.1021/ACS.IECR.2C04114/ASSET/IMAGES/MEDIUM/IE2C04114_0021.GIF. 

 [14] O. Machado, P. Martín, F. J. Rodríguez, and E. J. Bueno, “A Neural Network-Based Dynamic Cost Function for 

the Implementation of a Predictive Current Controller,” IEEE Trans. Ind. Informatics, vol. 13, no. 6, pp. 2946–

2955, 2017, doi: 10.1109/TII.2017.2691461. 

 [15] D. Wang et al., “Model Predictive Control Using Artificial Neural Network for Power Converters,” IEEE Trans. 

Ind. Electron., vol. 69, no. 4, pp. 3689–3699, 2022, doi: 10.1109/TIE.2021.3076721. 

[16] H. S. Khan, I. S. Mohamed, K. Kauhaniemi, and L. Liu, “Artificial Neural Network-Based Voltage Control of 

DC/DC Converter for DC Microgrid Applications,” in 2021 6th IEEE Workshop on the Electronic Grid (eGRID), 

2021, pp. 1–6. doi: 10.1109/eGRID52793.2021.9662132. 

[17] O. Han, T. Ding, C. Mu, Y. Huang, X. Zhang, and Z. Ma, “Multi-time Scale Optimal Dispatch for the Wind Power 

Integrated System with Demand Response of Data Centers Based on Neural Network-based Model Predictive 
Control,” IEEE Trans. Ind. Appl., pp. 1–11, 2023, doi: 10.1109/TIA.2023.3296065. 

[18] C. Li, L. Feng, Q. Wang, Z. Wang, L. Liao, and J. Lin, “Parameter optimization for three-level inverter model 

Predictive control based on artificial neural network,” in 2022 IEEE Vehicle Power and Propulsion Conference 

(VPPC), 2022, pp. 1–4. doi: 10.1109/VPPC55846.2022.10003303. 

[19] H. Wang, Y. Yue, B. Sun, and H. Zhao, “Neural Network-based Model Predictive Control Approach for Modular 

Multilevel Converters,” in 2023 4th International Conference on Electronic Communication and Artificial 

Intelligence (ICECAI), 2023, pp. 324–330. doi: 10.1109/ICECAI58670.2023.10176482. 

[20] X. Yang, K. Wang, J. Kim, and K.-B. Park, “Artificial neural network-based FCS-MPC for three-level inverters,” 

J. Power Electron., vol. 22, no. 12, pp. 2158–2165, 2022, doi: 10.1007/s43236-022-00535-6. 

 

 

n-gl.com

https://n-gl.com?utm_source=signature&utm_medium=pdf

